Problem Solving Agents Sensible Agents

K. Suzanne Barber

The Laboratory for Intelligent Processes and Systems

Electrical and Computer Engineering

The University of Texas at Austin

Phone: 512-471-6152

Fax: 512-471-5445 barber@mail.utexas.edu

Example Challenge Problem

<u>Different Mission Types</u> – Humanitarian, CONUS terrorism, OCONUS terrorism

<u>Different CONOPS</u> – mission goals, treatment protocol, reporting protocol, data acquisition protocols

What makes a Good Problem-Solver/ Decision-Maker?

Understand the problem and problem constraints

The Problem (Goal): What's the Mission? Strategic Goals? Tactical Goals?
The Situation Constraints: Deadlines, Priorities, Quality of Solution, Environmental Conditions

Knowledge Required to Solve Problem

Knowing what decisions/actions to take Knowing what resources are required

What do I know about solving the problem?

What do potential "Team Members" know About Solving problem? What do enemies
Or Competitors know
About solving problem?

Assessing Resource Capacity to Plan and Execute a Solution

Availability and Accessibility to resources

Completeness and Certainty of knowledge about resources

Resources = Data/Information, Time, Communication, Domain-specific resources (weapons)

What are MY resources?

Resources of potential "Team Members"?

Resources of Enemies or Competitors?

THEN -- What is the Most Appropriate Organization to Solve the Problem??

Mission Driven, Situation-based Coordinated CONOPS Promoted by Equipping Every Decision-Making Node with a

Sensible Agent to Determine Best Problem-Solving Organization

"Best" Organization? Point on Autonomy Spectrum?

For EVERY Problem (Goal)

- Command-driven -- Agent does not make decisions; must obey orders given by Master agent.
- ► True Consensus Each Agent is a team member, sharing decision-making tasks with other agents.
- Locally Autonomous / Master --Agent plans alone; may or may not give orders to other agents.

Autonomy Representation (G, D, C)

> Focus: G = the GOAL/Problem

*

- > Decision-Makers: D = (Agent(s), Strength)
 - > WHICH AGENTS make decisions
 - > THEIR RELATIVE STRENGTH in the decisionmaking process
- Authority Constraint: C = (Agents) boundexecute decisions

Locally Autonomous (LA)

```
Focus (G) = { MyGoal }

Decision-Makers (D) = { Me }

Authority-Over Constraints (C) = { Me }
```

Command-Driven (CD)

```
Focus (G) = { MyGoal }

Decision-Makers (D) = { You }

Authority-Over Constraints (C) = { Me }
```

Consensus (CN)

```
Focus (G) = { MyGoal, YourGoal }

Decision-Makers (D) = { Me, You }

Authority-Over Constraints (C) = { Me, You }
```

©2000 The Laboratory for Intelligent Processes and Systems

Dynamic Adaptive Autonomy

Is the SAME Organization (Autonomy Level) OPTIMAL

Comm

Deadlines?

Time?

Bandwidth?

How much do I know about HOW to Solve Problem?

Goal Priorities?
Solution
Quality?

What is my
Resource
Capacity to Solve
Problem?

For Intel, Assets, Weapons, etc.

- Availability and Accessibility
- Completeness and Certainty

Knowledge & Resources of Others?

Other NATO

Forces

oconus

IN-Country

Support

Militarv

NATO

Others Willing to Work with ME and/or plan for ME?

Trust in Others?

Dynamic Adaptive Autonomy = Situation-based Selection of Operational Point Along Spectrum

SPECTRUM OF AUTONOMY

Commanddriven

SPECTRUM OF AUTONOMY

Locally
Autonomous /
Master

©2000 The Laboratory for Intelligent Processes and Systems

Experimental Results

Barber, Goel and Martin, "The Motivation for Dynamic Adaptive Autonomy in Agent-Based Systems." Proceedings of the 1st Asia-Pacific Conference on Intelligent Agent Technology (IAT '99), pg. 131-140 (Won Award for Best Paper). December 14-17, 1999, Hong Kong.

Measure	Comm	Level of Difficulty			
	Status	0-10	10-25	25-40	40-50
TTS	EXIST	MC	MC/LA		
	N/E	LA	LA		
LOI	EXIST		CN	LA	MC
	N/E		MC	MC	MC/LA
# of Freqs	EXIST	LA/MC	MC/LA	LA	LA/MC
Attempted	N/E	CN	CN	CN	CN
# of	EXIST	LA	LA/MC	LA	LA
Messages	N/E	N/A	N/A	N/A	N/A

Performance Measures

(TTS) Time to Solution -- Interference Free State

(LOI) Average Level of Interference Over Problem-Solving Time

of Frequencies Attempted

of Messages Passed

Sensible Agent Architecture

Sensible Agent:

- Agent understands system goals and local goals (and trade-offs)
- Select "Best" Organization to Plan and Execute to Achieve Goals

Hypothesis:

The <u>operational level of agent</u>
<u>autonomy</u> is key to an agent's
ability to respond to situation
context, conflicting goals, and
constraints on plans and
execution

©2000 The Laboratory for Intelligent Processes and Systems

Autonomy Reasoner (AR)

Perspective Modeler (PM)

Conflict Resolution Advisor (CRA)

Action Planner

- Plans to Solve Problems/Goals
- Executes Plans
- Must be Capable of Using Different "Strategies" According to Autonomy Assignments and Types of Conflicts Detected by CRA

Representing the Agent's Solution Options to Solve Problem

Goal Tree

top-level goal

primitive goals

Each candidate goal has some inherent utility: (U_{system}, U_{agent})

The Agent Starts With One or More Initial Intended Goals (Goals It Has Committed to Pursue)

0

Perspective Modeler (PM)

Intended Goal Structure (IGS)

As Each Intended Goal
Appears in the IGS, the AR
Applies an Autonomy
Assignment to that Goal

Autonomy Reasoner (AR)

Locally Autonomous (LA)

0

Perspective Modeler (PM)

Intended Goal Structure (IGS)

The AP Selects From Alternatives and Inserts into IGS.

AP Selects and Allocates Among Agents (Itself or Others)

Intended Goal Structure (IGS)

Action Planner (AP)

Autonomy Reasoner (AR)

Consensus (CN)

Perspective Modeler (PM)

Intended Goal Structure (IGS)

Sensible Agent Module Interaction

Summary

- Sensible Agent Dynamic Adaptive Autonomy delivers the "best" problem solving organization based on the situation:
 - knowledge certainty and information completeness about other agents (benevolent, non-benevolent, or threat) and environment,
 - communication constraints,
 - domain-specific resource accessibility,
 - goal deadlines and goal priorities and
 - goal, plan, or belief conflicts
- Formally specified Testbed implementation for
 - Parallel development
 - Rapid Integration, Rapid Prototyping
 - Repeatable Experimentation
 - Visualization of Operation
 - Accessibility by 3rd Parties

